Compensation to imperfect fabrication and asymmetry of micro-gyroscopes by using disturbance estimator
نویسندگان
چکیده
Owing to the imposed coupling accelerations such as quadrature error and cross-axis perturbation, the micro-machined gyroscope could not be unconditionally retained at resonant mode. Once the preset resonance is not sustained, the performance of the micro-gyroscope is accordingly degraded. In this paper, a direct model reference adaptive control loop which is integrated with a modified disturbance estimating observer (MDEO) is proposed to guarantee the resonant oscillations at drive mode and counterbalance the undesired disturbance caused by quadrature error and cross-axis perturbation. The parameters of controller are on-line innovated by the dynamic error between the MDEO output and expected response. In addition, Lyapunov stability theory is employed to examine the stability of the closed-loop control system. At last, the efficacy of evaluation of the exerted time-varying angular rate, which is to be detected and measured by the gyroscope, is verified by intensive simulations.
منابع مشابه
The Development of Micromachined Gyroscope Structure and Circuitry Technology
This review surveys micromachined gyroscope structure and circuitry technology. The principle of micromachined gyroscopes is first introduced. Then, different kinds of MEMS gyroscope structures, materials and fabrication technologies are illustrated. Micromachined gyroscopes are mainly categorized into micromachined vibrating gyroscopes (MVGs), piezoelectric vibrating gyroscopes (PVGs), surface...
متن کاملPull-In Instability and Vibrations of a Beam Micro-Gyroscope
Gyroscopes are used as rotation rate sensors. Conventional gyroscopes are heavy and bulky, which creates important problems regarding their usage in different applications. Micro-gyroscopes have solved these problems due to their small size. The beam micro-gyroscope is one of the popular types of inertial sensors. Their small dimensions and low energy consumption are key reasons for their popul...
متن کاملClosed-Loop Compensation of the Quadrature Error in MEMS Vibratory Gyroscopes
In this paper, a simple but effective method for compensation of the quadrature error in MEMS vibratory gyroscope is provided. The proposed method does not require any change in the sensor structure, or additional circuit in the feedback path. The mathematical relations of the proposed feedback readout system were analyzed and the proposed solution assures good rejection capabilities. Based on ...
متن کاملMEMS Inertial Sensors-Based Multi-Loop Control Enhanced by Disturbance Observation and Compensation for Fast Steering Mirror System
In this paper, an approach to improve the disturbance suppression performance of a fast steering mirror (FSM) tracking control system based on a charge-coupled device (CCD) and micro-electro-mechanical system (MEMS) inertial sensors is proposed. The disturbance observation and compensation (DOC) control method is recommended to enhance the classical multi-loop feedback control (MFC) for line-of...
متن کاملDesign and Application of Quadrature Compensation Patterns in Bulk Silicon Micro-Gyroscopes
This paper focuses on the detailed design issues of a peculiar quadrature reduction method named system stiffness matrix diagonalization, whose key technology is the design and application of quadrature compensation patterns. For bulk silicon micro-gyroscopes, a complete design and application case was presented. The compensation principle was described first. In the mechanical design, four typ...
متن کامل